After seven years of operations, and upon finally running out of propellant, NASA decommissioned the twin Van Allen Probes spacecraft on October 18.
Launched on August 30, 2012, from Cape Canaveral Air Force Station in Florida, the Van Allen Probes - which was originally named the Radiation Belt Storm Probes - comprised dual-spacecraft mission specifically created to investigate the radiation belts that surround Earth.
“This mission spent seven years in the radiation belts, and broke all the records for a spacecraft to tolerate and operate in that hazardous region, all with no interruptions. This mission was about resiliency against the harshest space environment,” said Nelofar Mosavi, Van Allen Probes project manager at Johns Hopkins APL.
What was the objective of the mission?
Originally slated for a two-year mission, the spacecraft flew through the Van Allen belts - rings of charged particles trapped by Earth’s magnetic field - to understand how particles were gained and lost by the belts. The spacecraft made major discoveries that revolutionised how we understand our near-Earth environment.
With instruments measuring electromagnetic fields and charged particles, the Van Allen Probes explored the invisible phenomena shepherding particles in and around the belts.
It made discoveries about the architecture of the belts and the forces shaping them. Just as ocean storms on Earth can create giant waves, space weather, caused by the sun, can create plasma waves, where seas of particles are tossed by electromagnetic fields. The Van Allen Probes pioneered new explorations into the dynamics of these waves and their effects on our near-Earth environment.
Major discoveries made by the probes
The Van Allen belts were first discovered in 1958 and for decades scientists thought there were only two concentric belts. But days after the Van Allen Probes launched, scientists discovered that during times of intense solar activity, a third belt can form.
The belts, which are composed of charged particles and electromagnetic fields, can be energised by different types of plasma waves. One type, called electrostatic double layers, appear as short blips of enhanced electric field. During one observing period, Probe B saw 7,000 such blips repeatedly pass over the spacecraft in a single minute. These individually small events added up to one million volts over six minutes, capable of accelerating electrons up toward the relativistic energies commonly seen in radiation belt particles.
During big space weather storms, which are ultimately caused by activity on the sun, ions - electrically charged atoms or molecules - can be pushed deep into Earth’s magnetosphere in a series of impulsive events. These particles carry electromagnetic currents that circle around the planet and can dramatically distort Earth’s magnetic field.
Across space, fluctuating electric and magnetic fields can create what are known as plasma waves. These waves intensify during space weather storms and can accelerate particles to relativistic speeds. The Van Allen Probes found that one type of plasma wave known as hiss can contribute greatly to the loss of electrons from the belts.
The Van Allen belts are composed of electrons and ions with a range of energies. In 2015, research from the Van Allen Probes found that, unlike the outer belt, there were no electrons with energies greater than a million electron volts in the inner belt.
Plasma waves known as whistler chorus waves are also common in our near-Earth environment. These waves can travel parallel or at an angle to the local magnetic field. The Van Allen Probes demonstrated the two types of waves cannot be present simultaneously, resulting in greater radiation belt particle scattering in certain areas.
Very low frequency chorus waves, another variety of plasma waves, can pump up the energy of electrons to millions of electron volts. During storm conditions, the Van Allen Probes found these waves can hugely increase the energy of particles in the belts in just a few hours.
Scientists often use computer simulation models to understand the physics behind certain phenomena. A model simulating particles in the Van Allen belts helped scientists understand how particles can be lost, replenished and trapped by the Earth’s magnetic field.
The Van Allen Probes observed several cases of extremely energetic ions speeding towards Earth. Research found that these ions’ acceleration was connected to their electric charge and not to their mass.
The sun emits faster and slower gusts of charged particles called the solar wind. Since the sun rotates, these gusts - the fast wind - reach Earth periodically. Changes in these gusts cause the extent of region of cold ionised gas around Earth - the plasmasphere - to shrink. Data from the Van Allen Probes showed that such changes in the plasmasphere fluctuated at the same rate as the solar rotation - every 27 days.